| 1. | Minimax theorems for vector - valued mappings on g - convex space 凸空间上的向量极小极大定理 |
| 2. | The minimax theorem and variational inequality in interval space 区间空间中的极大极小定理和变分不等式 |
| 3. | Some topological minimax theorems 几个拓扑型极大极小定理 |
| 4. | Through reading a large amount of documents , the author surveys the formulation background and evolution of minimax theorems 通过阅读大量的文献,本文对极大极小定理的产生背景及其发展过程作了较为系统的概述。 |
| 5. | Since von neumann proved the first minimax theorem in 1928 , rich fruits have been obtained about research on minimax theory 自从vonneumann于1928年证明了第一个极大极小定理以来,关于极大极小理论的研究已经取得了丰硕的成果。 |
| 6. | A minimax theorem generally involves three assumption conditions : space structures on sets x and y , the continuity of the functions and the concavity and convexity of functions 一个极大极小定理一般涉及三个假设条件:集合x和y的空间结构,函数的连续性和函数的凹凸性。 |
| 7. | Because in minimax theorems for two functions let g = f , we can receive the corresponding minimax theorems for a function , so , minimax theorems for two functions becomes the focal point studied at present 由于两个函数的极大极小定理中令函数g = f ,即可得到相应的单函数的极大极小定理,所以,两个函数的极大极小定理成为目前研究的重点。 |
| 8. | According to the forms of minimax theorems , minimax theorems may be devided into minimax theorems for a function , minimax theorems for two or more functions , minimax theorems endowed with differential structure , etc . 根据极大极小定理的形式,极大极小定理可以分为单函数极大极小定理,双函数或多函数极大极小定理,赋予微分结构的极大极小定理等等。 |
| 9. | Chapter one has introduced the background and classification of minimax theorems ; chapter two summarizes several proof method of minimax theorems , which are illustrated with examples ; chapter three has explained the development general situation of minimax theorems for a function and for two functions with chapter four respectively , and according to the classification of the theorem , has illustrated some important conclusionses in quantitative minimax theorems , topological minimax theorems and quantitative - topological minimax theorems separately 第一章介绍了极大极小定理的背景及其分类;第二章总结了极大极小定理的几种证明方法,并举出例子进行说明;第三章和第四章分别阐述了单函数的极大极小定理和两个函数的极大极小定理的发展概况,在第三章中,按照极大极小定理的分类,分别对数量极大极小定理,拓扑极大极小定理和数量拓扑极大极小定理的一些重要结论作了介绍。 |
| 10. | In section 3 of this paper , we shall answer some fundamental questions on two - function minimax theorems such as the ways of establishing two - function minimax theorems , the classification on two - function minimax theorems and the relation between two - function results and one - function results , hi section 4 - 7 , we shall obtain some two - function quantitative minimax theorems , two - function topological minimax theorems , two - function topological - quantitative minimax theorems and some other types of two - function minimax theorems 譬如,如何建立两个函数极小极大定理,两个函数极小极大定理的分类以及两个函数结果与一个函数结果之间的关系。在第4章至第7章,我们将获得一些两个函数数量极小极大定理,两个函数拓扑极小极大定理,两个函数数量拓扑极小极大定理以及一些其它类型的两个函数极小极大定理。 |